FLAVONOIDS FROM LOTUS CRETICUS

SONG S. YANG*, FENG GAO†, TOM J. MABRY, M. E. AMER, M. A. ABDEL-KADER, Z. F. MAHMOUD and N. A. ABDEL-SALAM

Department of Botany, University of Texas at Austin, Austin TX 78713-7640, USA, Department of Pharmacognosy, Faculty of Pharmacognosy, Alexandria University, Alexandria, Egypt

(Received in revised form 3 October 1988)

Key Word Index—Lotus creticus; Leguminosae; isoflavonoids; flavanone; lupinalbin A-C; euchrestaflavanone A, wighteone methyl ether.

Abstract—One flavanone, euch restaflavanone A and four isoflavonoids (lupinalbin A-C, and a previously unreported 4'-methyl ether of wighteone) were isolated from Lotus creticus. The structures were elucidated by spectroscopy.

INTRODUCTION

Chemical investigations of the genus Lotus have not been extensive, although flavones and isoflavanes have been reported from three species [1-3]. We report here the isolation of a flavanone as well as four isoflavonoids from Lotus creticus L.

RESULTS AND DISCUSSION

An aqueous ethanol extract of the roots of *Lotus creticus* yielded the previously reported flavanone euchrestaflavanone A (3) and three recently described isoflavonoids, namely, lupinalbin A-C (5, 2, 4), as well as the previously unreported 4'-methyl ether of wighteone (1). This is only the second report of 2, 4 and 5.

In the UV spectrum of 1, Band II (268 nm) and Band I (330 nm) exhibited a relative intensity of ca 2 to 1. These data as well as an ¹H NMR signal at δ 8.35, which is characteristic for H-2 in isoflavones, together indicated an isoflavone skeleton for 1 [4]. The ¹H NMR spectrum of 1 also indicated that the B-ring of 1 was 4'-substituted $(\delta 7.49, 2H, d, J = 8 Hz, H-2', 6'; 7.02, 2H, d, J = 8 Hz, H-3',$ 5'), and that the A-ring was either 5,6,7 or 5,7,8 trisubstituted (δ 6.46, 1H, s, H-6 or H-8). Other signals indicated the presence of one methoxyl group (δ 3.79, 3H, s) and a prenyl sidechain (δ 3.21, 2H, br d, J = 7 Hz, 5.18, 1H, br t, J= 7 Hz, 1.62, 3H, br s, and 1.73, 3H, br s). A 2D COSY NMR experiment recorded at 500 MHz established the above signal assignments. The EIMS of 1 exhibited a molecular ion at m/z 352 ($C_{21}H_{20}O_5$) in agreement with one methoxyl, one prenyl and two hydroxyl groups for 1. Fragments at m/z 297 [M-C₄H₇]⁺, 165 [A₁-C₄H₇]⁻ and 69 [prenyl] + further supported the presence of a prenyl group (for MS nomenclature see [5]). The NOE experiment of 1 recorded at 500 MHz in DMSO-d₆ confirmed a 4'-methoxyl group, that is, irradiation of the methoxyl signal at δ 3.79 enhanced the signals for H-3' and 5' at δ 7.02 but not the singlet signal at δ 6.46. The 11 nm bathochromic shift of Band II (AlCl₃-HCl-MeOH) relative to the spectrum in MeOH suggested a C-5 hydroxyl group in 1 [4]. The MS fragment at m/z 165 $[A_1 - 55]^+$ supported the prenyl group being attached to the A-ring, and the singlet signal at δ 6.46 (a chemical shift typical for H-8) also suggested that the prenyl group is at the C-6 position. This assignment was supported by the tetramethylsilane-derivatization results, namely, the C-5 hydroxyl group could not be derivatized even standing overnight with the reagents following standard procedures [4], thus indicating steric hindrance of the C-5 hydroxyl by the prenyl group at the C-6 position. Therefore, the structure of 1 could be assigned as depicted.

Euchrestaflavanone A (3) could be easily identified by its ¹H NMR data which indicated a flavanone skeleton with three hydroxyl and two prenyl groups. One of the prenyl groups could be assigned to the C-3' position on the basis of chemical shifts and coupling patterns of the Bring signals. The other prenyl group could be assigned to the C-6 position since 3 also resisted trimethylsilylation of the C-5 hydroxyl group. The mp, UV and MS data all agreed with published information [6].

The UV, ¹H NMR and MS data for lupinalbin A-C (5, 2,4) also agreed with those reported in the literature [7]. Previously unreported ¹³C NMR data are presented for compounds 2 and 5 (Table 1).

EXPERIMENTAL

All UV spectra and TMSi derivatizations were carried out by standard procedures [4]

Roots of Lotus creticus L were collected during the flowering season in February 1985 in Egypt in El-kaser Descrite, 12 km from Marsa-matrouh. The plant was identified by Prof. El-Hadidy, the Department of Botany, Cairo University, Egypt

Air-dried powdered roots (800 g) were defatted with petrol, the material was then extracted with 70% aq EtOH After evapn of the solvent, the residue (22 g) was chromatographed over 400 g of silica gel (Merck) The column was first eluted with

Permanent address:

*Liaoning College of Traditional Chinese Medicine, Shenyang, China.

†South China Institute of Botany, Academia Sinica, Guangzhou, China.

1750

CHCl₃ (16 fractions, 150 ml each), then 2% MeOH in CHCl₃ (10 fractions, 150 ml each). The residue from fractions 8–9 (0.4 g) was rechromatographed on a small silica gel column (30 g) eluted with petrol-ether mixture (41); this procedure afforded compound 1 after crystallization from MeOH (40 mg) Rechromatography and repeated prep TLC separation of the concentrate of fractions 13–16 yielded, after crystallization in petrol, 175 mg of 3 as colourless needles. Crystallization of the material from fractions 17–24 (2.4 g) from MeOH afforded 2 (350 mg, colourless crystals). Repeated silica gel chromatography yielded 4 (2 mg, colourless crystals) and 5 (6 mg, colourless crystals)

Compound 1. Pale yellow crystals, mp $216-218^{\circ}$ (MeOH). EIMS (probe) 70 eV m/z (rel int) $352 \text{ [M]}^+(62)$, $337 \text{ [M -Me]}^+(20)$, $309 \text{ [M -C}_3H_7]^+$ (89), $297 \text{ [M -C}_4H_7]^+$ (100), $165 \text{ [A}_1-55]^+$ (4), $132 \text{ [B}_1]^+$ (7), 69 [prenyl]^+ (7) UV $\lambda_{\text{max}}^{\text{max}}$ 268, 330 (sh); (NaOMe), 277, 345, (AlCl₃), 279, 310 (sh), 375; (AlCl₃/HCl), 279, 310 (sh), 375, (NaOAe), 273, 330,

Table 1 13 C NMR chemical shifts* of compounds 2 and 5 (125 MHz, DMSO- d_b , TMS as int standard

С	2	5
A and C- ring		
2	149.8	1498
3	1134	1134
4	178 2	178 2
5	161 1	162 0
6	1118	998
7	164 2	164.2
8	940	94.3
9	156 2	156.2
10	102.5	102.5
B-ring		
1'	96 9	969
2'	152 3	1546
3'	98 7	98 7
4'	159 0	1620
5'	113.7	113 7
6'	121 0	121 0
Prenyl group		
1"	21.0	
2"	122 0	
3"	1308	
4"	177	
5"	25 5	

^{*}Signal assignments in the δ 149-164 range are tentative

(NaOAc-H₃BO₃), 273, 330 (sh) ¹H NMR (500 MHz, DMSO- d_6 , TMS): δ 8 35 (1H, s, H-2), 6.46 (1H, s, H-8), 7 49 (2H, d, J = 8 Hz, H-2′, 6′), 7.02 (2H, d, J = 8 Hz, H-3′, 5′), 3 21 (2H, br d, J = 7 Hz, H-1″), 5.18 (1H, br t, J = 7 Hz, H-2″), 1 62 and 1 73 (each 3H, br s, H-4″, 5″).

Acknowledgements—We thank Dr B A. Shoulders and his group for high resolution NMR measurements. This work was supported by the Robert A Welch Foundation (Grant F-130) and the National Institutes of Health (Grant GM-35710)

REFERENCES

- 1 Jay, M., Hasan, A., Voirin, B and Viricel, M R (1978) Phytochemistry 17, 827
- 2. Ingham, J L (1977) Phytochemistry 16, 1274
- Ronde, M. R., Millar, R. L. and Ingham, J. L. (1973) Phytochemistry 12, 2957.
- 4 Mabry, T J, Markham, K R and Thomas, M B (1970) The Systematic Identification of Flavonoids Springer, New York
- 5 Mabry, T J and Markham, K. R. (1975) in The Flavonoids (Harborne, J B, Mabry, T J and Mabry, H, eds) Chapman & Hall, London
- Shirataki, Y., Komatsu, M., Yokoe, I. and Manaka, A. (1981) Chem Phurm Bull 29, 3033
- 7 Tahara, S., Ingham, J. L. and Mizutani, J. (1985) Agric Biol. Chem. 49, 1775